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Executive Abstract

The first fully-resolved, non-intrusive, experimental measurements of the spatio-
temporal structure and dynamics of the full nine-component velocity gradient tensor field
Vu(x,t) in a turbulent flow have been obtained by applying the scalar imaging
velocimetry technique [Phys. Fluids A 4,2191-2206] to turbulent flow scalar field data .
A variational method for implementing this technique is described, in which weighted
residuals of the conserved scalar transport equation, the continuity condition, and a
derivative smoothness condition are minimized over the space of velocity fields. The
technique is applied to direct numerical simulation (DNS) data for the limiting case of
turbulent mixing of a Sc = 1 passive scalar field. The spatial velocity fields u(x;f)
obtained correlate well with the exact DNS results, as do statistics of the velocity and
velocity gradient fields. The method is then applied to fully resolved four-dimensional Sc
» 1 scalar field imaging measurements from a laboratory turbulent flow. Results give the
first fully-resolved data for the time-varying (u, v, w) vector velocity component fields
simultaneously everywhere on a regular three-dimensional spatial grid. Direct
differentiation of these fields yields the spatial structure in the full velocity gradient tensor
field components. From these, the vector vorticity field w;(x,¢) and tensor strain rate field
g;(x,t) are extracted, as are the kinetic energy density field k(x;r), the kinetic energy
dissipation rate field ®(x;z), and the enstrophy field W(x;¢). Finally, extraction of the
time evolution in these fields is demonstrated by applying this scalar imaging velocimetry
method to perform the inversion for the velocity field at several sequential time steps.
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1. Introduction and Overview

This research program at Michigan represents a combined expenimental and theo-
retical effort with the following three major objectives:

(i) todevelop a new, quantitative, high-resolution, four-dimensional, spatio-
temporal, scalar imaging diagnostic technique capable of yielding direct
experimental measurements of the structure and dynamics of the vector
velocity, vorticity, and tensor strain rate fields at the dissipative scales of
real laboratory turbulent flows,

(ii) to use this new measurement capability to experimentally determine the
detailed physical characteristics associated with the spatial structure and
temporal dynamics of the dissipative scales of motion in high Reynolds
number turbulent flows, and

(iii) to incorporate results from these novel measurements into an improved
understanding for the spatio-temporal characteristics of the fine scales of
turbulence, in order to contribute to the development of new models for
the small scales that will permit practical engineering computations of tur-
bulent flows.

Information on the fully-resolved, three-dimensional, spatial structure and simul-
taneous temporal dynamics of the full nine-component velocity gradient tensor field
Vu(x.z) at the small scales of turbulent flows is key to the development of physically-
based models for these scales of turbulence. These scales are generally presumed to be
quasi-universal in high Reynolds number flows, and thus studied in a generic context.
To date, this has been done almost exclusively via direct numerical simulations (DNS) of
the Navier-Stokes equations. More recently, there have been dramatic advances in exper-
imental techniques for whole field measurements in turbulent flows, which are beginning
to allow direct experimental studies of the structure and dynamics of velocity and scalar
fields in turbulence at a level of resolution and detail entirely comparable to DNS and at
parameter values inaccessible to such numerical simulations. These techniques are
demonstrating a potential that would have been unthinkable as recently as five years ago.
They are proving to be the next stage in a revolution that is providing detailed access to
turbulence structure and dynamics, permitting studies of real, spatially-developing turbu-
lent flows in nonperiodic domains, at conditions beyond the reach of DNS.

Our work under this AFOSR grant has been aimed at studies of the dissipative
scales of turbulence. We use a molecular racer together with high-speed, high-resolution
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imaging methods to allow access to the finest scales of motion in the flow. These allow
fully-resolved, four-dimensional, spatio-temporal measurements of a dynamically pas-
sive, conserved scalar quantity ((x,¢) being mixed by the flow. The work under this
AFOSR grant has been based on a new technique we have developed [ Phys. Fluids A 4,
2191-2206] that allows these conserved scalar field measurements to be used to extract
the underlying vector velocity field u(x,r), along with the vector vorticity and tensor
strain rate fields, at the dissipative scales of turbulent flows. This has produced the first
fully-resolved, non-intrusive, experimental measurements of the spatio-temporal structure
and dynamics of the full nine-component velocity gradient tensor field Vu(x,¢) in a turbu-
lent flow. These wholly new data are now being used to develop physically-based mod-
els for the small scales in large eddy simulations of turbulent flows.

1.1 Background

Experiments capable of directly yielding useful information on the detailed struc-
ture and dynamics of velocity gradients in turbulence have been few. Most have been
limited to single-point measurements of a small subset of the full velocity gradient tensor
field. The earliest and still the most widely used of these experimental techniques allow
measurement of one or more of the gradient tensor components rely on multiple hot-wire
or hot-film probes. The original four hot-wire probe was developed in 1950 by
Kovasznay (1954) for measurements of the streamwise component @, of the vorticity
vector at a single spatial point. Corrsin & Kistler (1954), and later Willmarth & Lu
(1972), Willmarth & Bogar (1977), and Kastrinakis et al (1977, 1979, 1983) used
probes of this type for streamwise vorticity component measurements in turbulent bound-
ary layers. Vukoslavcevic & Wallace (1981) subsequently developed an improved
Kovasznay-type probe for the streamwise vorticity that had four independent wires to
overcome parasitic effects between the various sensors. Foss (1981), Foss et al (1986,
1987), and Haw, Foss & Foss (1989) have successfully used a similar four hot-wire ar-
rangement to measure the cross-stream component ay of the vorticity vector at a single
point. A five-sensor hot-film probe for simultaneously measuring the spanwise and nor-
mal vorticity components, », and w,, was developed and used by Eckelmann et al (1977)
and Wallace, Brodkey & Eckelmann (1977). Surveys of some of the characteristics of
these vorticity probes and the data obtained from them are given by Wallace (1986) and
by Foss & Wallace (1989). Kim & Fiedler (1989) subsequently used a six-sensor probe
for simultaneous measurement of the streamwise and cross-stream vorticity components,
w, and ;. More recently, Vukoslavcevic, Wallace & Balint (1991), Balint,
Vukoslavcevic & Wallace (1991) have succeeded in building and using a nine-sensor hot-
wire probe that yields simultaneous measurements for all three vorticity components ©;,

-
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@y, and ;. This probe permits resolution of the vorticity vector at a scale approximately
six times coarser than the local Kolmogorov scale at their measurement location in a thick-
ened turbulent boundary layer. Kit er a! (1987, 1988) have developed a nine-wire probe
to measure components of the velocity gradient tensor, and even more recently Tsinober,
Kit & Dracos (1992) have assembled a 12-sensor hot-wire probe, and even a 20-sensor
probe, without any common prongs. for measuring all nine independent components of
the velocity gradient tensor at a single spatial point. In their grid turbulence experiment,
this probe aliowed resolution of lengthscales roughly five times coarser than the local
Kolmogorov scale.

Despite the successes in development of these multiple hot-wire/film probes, all
have certain charactenstics in common that ultimately influence their ability to provide
data on the structure and dynamics in the velocity gradient tensor field. Firstly, even in
principle they allow time series measurements at only a single spatial “point,” with one-
dimensional spatial structure in the velocity gradient component fields discernible only if a
Taylor hypothesis is accepted. Of a more practical nature, interference between the vari-
ous wires and prongs in such probes leads, at a minimum, to complex calibrations and
the potential for erroneous measurements [e.g. see Vukoslavcevic, Wallace & Balint
(1991), Tsinober, Kit & Dracos (1992)]. Moreover, as the number of sensor wires and
prongs in these invasive probes increases to measure more components of the local veloc-
ity gradient tensor, the probe size increases and blockage effects can become significant,
altering the velocity gradients within the wire farm at the probe tip.

In part to overcome these concerns about intrusive probes, non-invasive optical
techniques have been increasingly used in recent years to measure certain velocity gradi-
ent components. Lang (1985) developed an LDV with four focal volumes to measure the
spanwise vorticity in a turbulent shear layer. More recent advances in laser diagnostics
and high-speed data acquisition and processing capabilities have facilitated a variety of
optically-based, non-intrusive velocimetry techniques which provide information over
spatial fields of many points. Reviews of some of these are given, for example, by
Adrian (1986, 1991), Lauterborn & Vogel (1984), and Gad-el-Hak (1989). Being opti-
cally-based, these techniques potentially offer high spatial and temporal resolution, as
well as genuine field information rather than single-point data. The most widely used are
particle image velocimetry techniques. These generally produce two-component velocity
vectors over two-dimensional fields, though three-dimensional particle wracking "4, 5] and
holographic particle image velocimerry |6, 7} are being developed for measuring full,
three-component vector velocity fields in complex flows. However, as with all particle
imaging techniques, the seeding densities required to adequately resolve the finest veloci-
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ty gradient lengthscales in turbulent flows makes optical penetration into the flow diffi-
cult, and potentially limits these methods for studies of the fine structure and dynamics of
velocity gradient fields in turbulent flows. This optical penetration difficulty can be cir-
cumvented by using an effectively continuous distribution of laser fluorescent dye
molecules as the seed, whose size eliminates the Mie scattering associated with particu-
lates and thus maintains optical transparency in the flow field. Determining velocities
then no longer centers on finding discrete particle displacements, but rather on inversion
of the time-evolving dye concentrartion field to extract the underlying velocity field. Often
the dye molecules are both dynamically passive and conserved, so that the conserved
scalar transport equation governs their concentration field evolution and extraction of the
velocity field can begin from this equation. Such scalar-based velocimetry techniques
were first introduced in Ref. 1.

Here we demonstrate the first application of the scalar imaging velocimetry con-
cept to laboratory measurements of a conserved scalar field in a turbulent flow, and ex-
tract the underlying velocity gradient tensor field as well as its time evolution. As before,
we approach the problem of determining the fully resolved, space- and time-varying ve-
locity field u(x,r) from the standpoint of the exact conserved scalar transport equation. A
variational method for implementing this concept is described in Sec. II, in which weight-
ed residuals of the conserved scalar ransport equation, the continuity condition, and a
derivative smoothness condition are minimized over the space of velocity fields. The
technique is then applied in Sec. III to direct numerical simulation data for the limiting
case of turbulent mixing of a Sc = 1 passive scalar field. The spatial velocity fields u(x;r)
obtained are compared with the exact DNS results to assess the validity of the method. In
Sec. IV, the method is then applied to fully resolved four-dimensional Sc » 1 scalar field
imaging measurements from a laboratory turbulent flow. We extract the time-varying full
vector velocity component fields simultaneously everywhere on a regular three-dimen-
sional spatial grid. Direct differentiation of these fields yields the spatial structure in the
full velocity gradient tensor field components Vu(x;z). From these, the vector vorticity
and tensor strain rate fields are given, as are the kinetic energy density field the kinetic en-
ergy dissipation rate field, and the enstrophy field. Extraction of the time evolution in
these fields is also demonstrated by applying this scalar imaging velocimetry method to
perform the inversion for the velocity field at several sequential time steps. In Sec. V we
conclude with a discussion of the suitability of this technique for large scale studies of the
structure and dynamics of the small scales of turbulent flows, and comment of the possi-
ble extension to lower Sc scalar field measurements, offering access to the velocity gradi-
ent fields over a wider range of lengthscales.
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2. The Scalar Imaging Velocimetry Technique

In this section, we describe the scalar imaging velocimetry method implemented
here to determine the vector velocity field u(x,?) from fully resolved, four-dimensional
measurements of a single, dynamically passive, conserved scalar field {(x, ¢) in turbulent
flows. This implementation expands on that in Ref. 1 in its use of variational techniques
in the velocity field extraction. The underlying conserved scalar field measurement tech-
nique will be reviewed here only briefly; details can be found in Refs. 7-9.

A. Scalar field measurements

Any dynamically passive conserved scalar field {(x,r) evclves via the advection-
diffusion equation
3? +u- V{ - —— SV’C =0 , o))
where all quantities are normalized by reference length and velocity scales /* and 4*. The
dimensionless scalar diffusivity 1/ReSc (the Peclet number) involves the Reynolds num-
ber Re = (u"{"/v) and Schmidt number (v/D), with v and D being respectively the vortici-
ty and scalar diffusivities. Scalar imaging velocimetry involves inversion of (1), together
with additional conditions, based on measurements of the scalar field. The requisite mea-
surements must therefore be fully-resolved in both space and time, while at the same time
having sufficient signal quality, 1o allow direct differentiation of the scalar field data to
evaluate the derivatives appearing in (1).

Such fully-resolved four-dimensional scalar field measurements are based on suc-
cessive, high-speed, planar imaging of the laser induced fluorescence from a dynamically
passive laser dye carried by the flow, whose concentration is a conserved scalar variable.
A collimated laser beam is repeatedly swept in a raster fashion throughout a small volume
in the flow by a pair of low-inertia mirrors driven by two galvanometric scanners slaved
to the imaging array timing. The successive 256 x 256 scalar field data planes are ac-
quired at rates up to 142 planes/sec into gigabyte sized data sets using very fast computer
disk ranks to produce a four-dimensional spatio-temporal data space structured as shown
in Fig. 1. Each such measured data space consists of a rapid succession of individual
three-dimensional spatial data volumes for {(x;z). Each of these data volumes in tumn
consists of a sequence of two-dimensional spatial data planes, each consisting of an array
of 256 x 256 individual data points. There are over three billion data points comprising
the scalar field data space resulting from each such measurement. The flow facility and
imaging electronics are designed so that the resulting effective spatial resolution (Ax, Ay,
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Az) between adjacent points in each three-dimensional data volume is smaller than the
local strain-limited molecular diffusion scale A/ ~ Sc™!/2Re;z™3/4 of the scalar field.
Similarly, the temporal resolution Ar between the same data point in successive spatial
data volumes can be held smaller than the local molecular diffusion scale advection ime
Ap/u. This resolution, together with the high signal quality artained, allows accurate dif-
ferentiadon of the measured conserved scalar field data in all three space dimensions and
in time to determine the components of the instantaneous time derivative field
(3/30)¢(x,1), the scalar gradient vector field VE(x,t), and even V2{(x,t) throughout the
four-dimensional data space. Such fully-resolved conserved scalar field measurements
have been conducted at outer-scale Reynolds numbers Reg = (4d/v) as high as 6,000. An
example of a single three-dimensional spatial data volume obtained via this technique is
shown in Fig. 2.

Note that, for dilute solutions in water, the scalar diffusivity of the dye is quite
small, with S¢ = 2075. As a consequence, the underlying velocity field which we are
aiming here to extract from such measurements is considerably smoother than the scalar
field from which we begin. In particular, the finest gradient lengthscale in A, in the ve-
locity field is larger, by a factor of Sc!/?, than the smallest gradient lengthscale Apin the
scalar field. For the Sc in the laboratory data in Section [V, this ratio of scales is about
45. However, for the Sc¢ = | DNS data in Section [l this ratio is only 1 and thus extrac-
tion of the velocity field is more difficult.

B. Formulation of the variationul problem

The relation between the scalar field and the underlying velocity field comes sole-
ly through u- V{ in (1) Previously!-3, we have inverted this equation directly to obtain
the local projection w(x,¢) of the velocity vector onto the scalar gradient unit vector,
namely
VE(x,1)
|VE(x,0)|

The full vector velocity field u(x,t) was then uniquely determined from the Vu,(x,?) field
via an iterative scheme incorporating a smoothness assumption that becomes increasingly
valid as Sc increases. The zeroth iteration estimate u%(x,7) was found by direct inversion,
at each point in the domain, of the local 3 x 3 linear system formed by writing (2) for
triplets of closely spaced points having sufficiently noncolinear scalar gradients.
Subsequent iterations incorporated the velocity gradients Vun-1(x,t) obtained from the
previous iteration in the calculation of the n-th estimate u”(x,?). Convergence was stable
and rapid, with the final result for u(x,) typically achieved for Sc » 1 after just two or
three iterations. This direct-inversion implementation was shown to produce accurate re-

w,(X,0) = u(x,1) 2
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sults for a wide range of test cases — for details see Ref. 1.

Despite the high resolution and signal quality of the underlying scalar field mea-
surements from Ref. 11, small but unavoidable errors will be introduced in the various
scalar field derivatives in (1) and (2). As a consequence, even if the true u(x,r) were in-
troduced in (1), then as a direct result of these small errors in the {(x,7) derivative fields,
the right hand side would in fact nor quite be zero. In effect, strict enforcement of the
zero right side in (1) introduces errors in the velocity field obtained from this direct-inver-
sion approach. These considerations in turn naturally motivate a variarional approach to
the inversion problem, in which the right side in (1) is not forced to zero, but rather is
minimized over the space of possible velocity fields, subject to a smoothness constraint as
before. In effect, we do not seek the velocity field that produces the clearly spurious zero
right side in (1), but instead take the velocity field u(x,¢) that minimizes the integral of the
right side over the entire domain as an optimal representation of the true velocity field.
Formally, we minimize the integral of a function E over the domain D as

J'E(u,.u,.u,;x,,xz,x,)d’x=min , A 3)
D

where E is composed of residuals representing deviations from conserved quantities, in-
cluding (1), as well as conditions measuring the smoothness in the u(x;?) solution.

C. Specification of the variational equations

As noted above, the integral minimization in (3) aims to find the one velocity field
that best satisfies the scalar transport equation in (1) while at the same time satisfying an
appropriate smoothness condition. In general, the function £ can be written as a sum of
an arbitrary number of such conditions

E=E +a’E, +BE,+ - , (4)

where each of the E; 2 0 represent a local condition involving the velocity field and, pos-
sibly, the scalar field. The adjustable factors (a2, B2, ... > 0) allow control over the rela-
tive weights assigned to these individual conditions in the minimization function £. In
our case, the term £, is chosen as the right side in (1), namely the condition that the
(known) scalar field derivatives and any candidate velocity field be in “good” agreement
with the scalar transport equation (1). Thus formally

E = {[9_ +u.V— _l_vz] C(x,t)}z . (5)
! ot ReSc

The smoothness condition, as well as any additional conditions, must be specified in a
manner consistent with the numerical scheme by which the minimum in (4) is to be
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found. In particular, writing (4) for a set of N discrete points in the domain D leads to a
system of 3V simultaneous equations for the velocity components u; for i = {1, 2, 3} at
each of th= NV points. In general this system will be very large. Consequently, we con-
fine c'.. tnterest to conditions that will produce a linear system, so that the simplicity af -
forded by linear inversion methods can be employed in the solution for u(x,s). This, in
turn, demands that the derivatives (€ ,/du;) should be linear in the components ;, and
thus that the conditions be at most second-order in u. Among this restricted set of condi-
tions, one is immediately obvious. namely the incompressibility condition V- u = 0.
This is represented in non-negative torm as

E,={V-u}. (6)

However while ‘nclusion of this incompressibility conditon is certainly desirable, it first-
ly does not impart the requisite smoothness on the solution, and secondly suffices to de-
termine the solution in two dimensional flows only. An explicit smoothness condition
that satisfies these conditions in necessary. Ideally, this would be a direct mathematical
representation of a specific physical property of the flow. Unfortunately, the existence of
flow properties which can be represented as minimizations of integral quantities is very
limited - e.g. to certain simple inviscid, circulation-preserving flows; see Truesdell!2.
Here we choose to minimize the velocity gradients by the condition

£, ={Vu:Vu} . )

The physical implications of this condition can be understood from the kinetic energy
transport equation, where (7) includes both the work done by the viscous stresses and the
kinetic energy dissipation by the viscous stresses. Incorporating (7) as the smoothness
condition thus acts to imitate the fluid viscosity as it smoothes out strong gradients and
pursues a condition of minimized kinetic energy dissipation.

Note that explicit agreement with these conditions is not being enforced; rather,
we require only that the deviations from these conditions be minimized in the weighted
sense prescribed in (3) and (4). Since the integral in (3) involves the three dependent
variables u, and three independent variables x,, standard variational calculus lead to the
three vanaoonal (Euler) equations

A VEL, P WL, (@ By v, ) -B Vu= (S, (9)

. , . s 2 d 1
uGg +vi+wl g~ 1—[3‘)(u‘_v +v o+ W,,)"B Viv= _(-a%--R—eS—cvzc)C, (10)

4 2 N = a§ 1
ul L, +vi Ll +wl, —(a +BZ)(L¢‘z +v,+ Wu)"BZVZW"—(‘é?-kEVZCJCt an
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where subscripts denote spatial derivatives. The solution of these equations gives the ve-
locity field u(x;t) that minimizes (3) - (7) for the given scalar field data {(x,?). Note that
these equations are linear in the velocity components (i, v, w).

Finding the solution for the velocity field involves discretizing (9) - (11) and writ-
ing these three equations for each of the points in each three-dimensional spatial data vol-
ume. In doing this we order the NV points in each volume by indexing successively in x,
y, and z. We then construct three N-dimensional vectors containing the velocity compo-
nents «, v, and w at each of these points, and finally concatenate these to form a single
3N -dimensional vector representing the velocity field u(x;¢). The above equations can
then be wrnitten as a linear system of the form

Au=>b (12)

where A is a 3N x 3N marrix containing the (known) scalar field derivatives appearing on
the left in (9) - (11), and b is a 3V -dimensional vector containing the (known) scalar field
derivatives on the nght side in these equations. Solving (12) for the (unknown) velocity
field u simply requires inverting the mawix A. However, owing to the size of this matrix
in the cases for which results are presented here, direct solution methods are impractical.
We therefore use standard linear iterative methods, in this case Gauss-Seidel and SOR it-
eration. Classical stability requirements for convergence of such iterative methods place
restrictions on the range of a and B in (4). We use o = 0.10 and B = 0.15 in the results
presented here. The iteration is begun with u = 0 as the initial estimate.

Note that minimization of £, and £y in (6) and (7) can occur by reduction of the
average velocity magnitude over the entire domain, as well as by reduction of the result-
ing scaled velocity gradients. The u in these conditions thus “floats.” Inclusion of E,
and E5 in (4) will therefore reduce the average velocity magnitude by an amount that de-
pends on o and B. It is only through E, that the average velocity magnitude tied to an ab-
solute level set by the scalar field derivatives. The velocity field u that results from (12)
is therefore finally reinserted in (3) 1o determine the uniform multiplicative constant that
minimizes £, over the entire domain.

D. Features of the variational formulation

Aside from the key differences noted above, it is insightful to compare certain
other aspects of the variational scalar imaging velocimetry formulation given in (9) - (12)
with the direct-inversion formulation in Ref. 1. In the latter, determination of the velocity
vector at a given point X in the data volume relies on scalar field information from points
within a small neighborhood of x. This results from writing (2) for wriplets of points to
solve for the three unknowns u, v, and w under the assumption that, for the zeroth itera-
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tion estimate, the velocity u at each of these three points is the same. Furthermore, multi-
ple triplets are formed at each point to allow reduction of noise effects. This smoothness
condition in the direct-inversion approach is easily justified for Sc » 1 scalar field data,
since the scalar field then varies on much finer scales than does the velocity field. In ef-
fect, the velocity field sought has a tar lower level of detail than does the scalar field data
from which the calculation proceeds. However, at Sc = 1, the comparable characteristic
length scales in the velocity and scalar fields affords no redundancy of scalar field infor-
mation for the determination of the velocity field. In that case, the scalar and velocity
fields both possess roughly the same amount of detail. In the context of inversion-based
scalar imaging velocimetry, this renders the imposition of smoothness and noise reduction
for Sc = 1 difficult; at the same time, this points out two particularly attractive features of
the variational formulation, namely its strictly local nature and its comparative insensitivi-
ty to noise in the scalar field data.

The insensitivity to noise in the scalar field measurements is implicit in the use of
residuals (5-7) in the variational formulation. The significance of the local nature of the
scheme can be understood as follows. Note that in the variational formulation, the deter-
mination of the velocity vector at any given point involves information at that point and its
immediate neighbors only, specifically those neighbors sufficient to calculate spatial
derivatives. No assumptions are made about the relative level of detail in the velocity and
scalar fields. The local nature of the variational formulation thus makes it fully applicable
to any turbulent flow scalar field data for which the spatial resolution is sufficient to re-
solve the smallest expected velocity field lengthscales. In particular, the variational scalar
imaging velocimetry scheme can be applied to fully resolved scalar field information in
turbulent flows at Schmidt numbers of one and higher.

10
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3. A DNS Test for Sc = 1

In this section, the variational scalar imaging velocimetry method described above
is applied to scalar field data obtained from a direct numerical simulation (DNS) of Sc = 1
passive scalar mixing in a turbulent flow. The use of DNS data, as opposed to syntheti-
cally generated test fields, provides the detailed velocity field against which stead, as a
test of the variational scalar imaging velocimewy scheme at low Schmidt number, we will
make use of a direct numerical simulation of a turbulent flow at Sc = 1. The velocity
fields obtained through application of the scalar imaging velocimetry technique can be
compared with the actual velocity fields used in the simulation, allowing us to quantify
the accuracy of the technique.

We use the DNS data of Mell, Kosdly & Riley (1992) for turbulent mixing of a
dynamically passive Sc = | conserved scalar quantity in a decaying, homogeneous,
isotropic, incompressible, turbulent flow. The Taylor scale Reynolds number Re, decays
from its initial value of 92 to 65 at the time chosen for this test. A sample scalar field
plane from this simulation at this time is shown in Fig. 3a. The computations were per-
formed on a 1283 volume. Scalar field derivatives were computed in 128 x 128 x 13
point sub-volumes, which were then subsampled to 64 x 64 x 7 point domains for this
test. With Ax = Ay = Az, the limited span in the third (z-) dimension was chosen to be
characteristic of available fully resolved experimental scalar field data. The grid resolu-
tion was Ax = 0.1 A, and the time separation between successive volumes used in this
test was Ar = 0.07 Aqfuy,, again to mimic the characteristics of currently available fully
resolved experimental scalar field data.

The scalar field derivatives 9401, V, and V2{ are the only inputs to the varia-
tional formulation in (9) - (12). These are obtained via linear central differences from the
scalar field data, and are shown in Figs. 3b-d for the same scalar field plane. The veloci-
ty field is then obtained by inverting (12) for the given scalar derivative matrix A and vec-
tor b. For the volume dimensions used here, the vector b contains 86,016 elements, and
the matrix A consists of 7.4 (109) elements, of which 1.7 (106) are non-zero. The
Gauss-Seidel iteration on this system, using a non-optimized code, typically required
about an hour on an HP9000/735 workstation. The resulting individual velocity vector
component fields are shown in Fig. 4. Shown also in this figure are the actual DNS ve-
locity vector component fields for comparison. It is evident by examining these that the
variational scalar imaging velocimetry method yields results for velocity vector field
which are in good agreement with the exact values. To quantify this agreement, we use

11
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of the conventional fluctuation correlation

My 13)

(43),0 (4)...

where the primes denote fluctuations, and the subscripts A and B refer to the SIV and
DNS fields. The correlations obtained for the «, v, and w fields are given in Table 1,
where 1.00 represents perfect correlation. That the w component has the poorest correla-
tion is not surprising, given that the data volume has only one-tenth the extent in the z-di-
rection that it has in the x- and y-directions. Thus the one-sided velocity derivatives re-
quired at the limits of the volume are more likely to affect the accuracy of the z-direction
velocity component than the others. Nevertheless, the correlation levels obtained are
quite high. The departures from perfect correlation would appear to result primarily from
the smoothness condition £5 in (7), since the other two conditions in (3) should be identi -
cally zero.

Rus

Component Ras
u 0.94
v 0.94
w 0.91

Table 1. Correlations between the velocity vector component
fields resulting from the scalar imaging velocimetry
method and the exact DNS results for the Sc = 1 case.

As a further demonstration of the agreement between the DNS fields and the
scalar imaging velocimetry results, Fig. S presents distributions of the values of the ve-
locity components u, v, and w for both the DNS and SIV fields. To emphasooze that the
important comparison is of the forms of these distributions, the velocity component val-
ues for each field have been normalized by their second moments. The similarity in the
resulting distributions is evident in this figure.

It must also be noted that this Sc = | test case is extremely demanding for any
scalar-based velocimetry technique, since the scalar and velocity fields in this case each
contain the same spatial length scales. The velocity field being sought therefore has the
same information content as does the scalar field on which its extraction is based. Thus
there is no redundancy of scalar field information. By comparison, at Sc » 1 the informa-
tion content in the scalar field far exceeds that in the velocity field, and this redundancy
should make extraction of the underlying velocity field even more accurate.

12
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The primary interest in this scalar imaging velocimetry technique is the access it
offers to spatial structure and temporal dynamics of the full nine-component velocity gra-
dient tensor. Accordingly Fig. 6 compares three typical components of Vu(x,?) with
their DNS counterparts. Note that the structure and magnitudes of these tensor compo-
nents is very similar in both cases. Indeed the visual comparison appears better than that
in Fig. 4, however the quantitative correlations are actually lower. The complete tensor

correlaton R 45, defined as
9 | |
ox, L\, .

T2 )
9, 9,
oz, ), ox; ),

is 0.783. Table 2 gives the individual tensor component correlations in (13) obtained for
all nine gradient tensor component fields. Note that for the du/dy, dv/dz, and dw/dx com-
ponent fields in Fig. 5 the correlations are 0.79, 0.83 and 0.75 respectively. The surpris-
ingly better visual comparisons than in Fig. 4, for which the correlations are in fact sig-
nificantly higher, apparently result from the larger number of features available as land-
marks for comparison in the gradient fields.

R 4

= (14)

Component R,
du/ox 0.80
du/dy 0.79
Ju/oz 0.80
ov/ox 0.80
dv/dy 0.80
ov/dz 0.83
ow/dx 0.75
dw/dy 0.80
ow/oz 0.80

Table 2. Correlations between the velocity gradient tensor fields
(du,/dx ) resulting from the scalar imaging velocimetry
method and the exact DNS results for the Sc = 1 case.

Results such as those in Figs. 3 and 4 demonstrate that, even in this limiting Sc =

I case, the scalar imaging velocimertry method is capable of yielding rather accurate re-
sults for the spatial structure of the full vector velocity fields and nine-component velocity

13
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gradient tensor fields in wrbulent flows. Since direct numerical simulations of turbulent
mixing for Sc » 1 scalars are beyond present computational reach, similarly detailed DNS
studies of the accuracy of scalar imaging velocimetry for large Sc scalar field data are not
possible. However we can anticipate that, owing to the excess scalar field information
available in that case, extraction of the underlying velocity field is fundamentally more ac-
curate for Sc » 1 than at Sc = 1. Indeed, Ref. 1 demonstrated highly accurate extraction
of velocity fields from large Sc turbulent flow data and a variety of test fields. Based on
the relatively good accuracy demonstrated here for the extreme unity Schmidt number
case in a full turbulent flow, on the fundamental improvement expected wi' “easing
Sc, and on the results in Ref. 1, we expect that for Sc » 1 data the method shc. : capa-
ble of accurately producing velocity and velocity gradient fields in turbulent flows.

14
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4. Tests of the SIV Technique

In this section, we apply the scalar imaging velocimetry technique to fully-re-
solved, four-dimensional, experimental data for Sc » 1 scalar mixing in a turbulent shear
flow, and from this extract the first experimental measurements of the underlying struc-
ture and dynamics of the full velocity gradient tensor field in a turbulent flow. The data
used here are for the mixing of a dynamically passive Sc = 2075 conserved scalar in the
self-similar far field of an axisymmetric wrbulent jet at outer-scale Reynolds number Reg
= 4,200. The experimental technique is described in detail in Sec. II.

An example of a typical two-dimensional spatial data plane from such a four-di-
mensional spatio-temporal data space is shown in Fig. 6a. Each such data plane has
nominal dimensions of 256 x 256 data points, and spans 2.2 strain-limited viscous diffu-
sion lengthscales A, on each side, or approximately 1/25-th of the local jet width. Note
that A, = 5.9 - Ak, where Ag = (v3/e)!/4 is the classical Kolmogorov scale. With the
finest scalar gradient lengthscale being Ap = A, - Sc1/2, these scalar field data are fully
resolved in all three spatial dimensions. In particular, the in-plane pixel spacing is Ax =
Ay = 107 um, and the effective interplane spacing is Az = 110 wm, while the local scalar
diffusion lengthscale Ap is 239 um. Further, the time separation between measurements
at the same spatial point in two temporally successive three-dimensional spatial data vol-
umes is At = 0.0532 sec. This compares with the local scalar gradient advection
timescale Ayu of 0.0848 sec, indicating that the data are essentially resolved in time as
well. This level of resolution, together with the high signal quality attained, allows accu-
rate differentiation of the measured scalar field data simultaneously in all three space di-
mensions and in time. Examples of typical resulting a{/0t, V{, and V2{ fields are
shown in Figs. 6b-d. All derivatives are obtained here by direct linear central differenc-
ing on the measured scalar field data, with no explicit smoothing or filtering applied.
Notice that even the second derivatives in Fig. 64 are relatively free of the effects of
noise. The variational nature of the implementation outlined in Section II for scalar imag-
ing velocimetry should make the results obtained relatively insensitive to the errors that
even this low level of noise introduces in (1).

Data of the type in Fig. 6, together with the scalar imaging velocimetry method in
(3)-(12), allows the underlying fluid velocity field u(x;r) throughout the four-dimensional
data space to be found. Since Sc = 2075 in these measurements, the ratio of the finest
gradient lengthscales in the velocity and scalar fields is A,/Ap= 15, and as a consequence
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measurements such as these that fully-resolve the scalar field are highly oversampled for
the velocity field. For this reason we subsample each of the scalar derivative planes in the
four-dimensional data space to 64 x 64 points. In that case, scalar field is still oversam-
pled by roughly a factor of four, but the computational work required to find the velocity
field has been reduced considerably. The resulting u and b vectors each contain 61,440
elements, and the A martrix contains approximately 3.8 (10%) elements, of which 1.23
(109) are non-zero. The same (non-optimized) Jacobi iteration algorithm used in Section
111 then typically requires about 20 nunutes to solve the linear system for the velocity field
u(x:z) in (12) at each time r.

A. Vector velocity fields

Fig. 7 shows the resulting u, v, and w components of the velocity vector field in
the same scalar field data plane shown in Fig. 6. For the coordinate orientation used,
gives the radial component. v the streamwise component, and w the azimuthal (out of
plane) component. The mean velocity has been subtracted from these components, so
that the instantaneous fluctuation values are shown. Note that the apparent lengthscale
characteristics of the velocity gradients in these results is quite consistent with the estimate
given above: i.e. euch data plane spans approximately 2.2 velocity gradient lengths in
each direction. It should be noted that full three-component velocity vector field measure-
ments such as these have not previously been available, and thus it is not common to pre-
sent velocity field information in the form shown in Fig. 7. More typically, experimental
velocity component fields are presented as projections of the local vectors into a measure-
ment plane. For this reason, the data from Fig. 7 are shown in this manner in Fig. 8,
where the (u4.v) and (4.w) projections at each point in that particular plane are given.

It is apparent from the data in Figs. 7 and 8 that, owing to the large Sc involved,
these measurements allow examination of the velocity field at the dissipative scales of tur-
bulent flows. Results for the full vector velocity field over a larger range of lengthscales
requires similarly resolved scalar field measurements at a significantly lower value of Sc,
since A /Ap= Sc!'2. The class of scalars for which practical measurements of the type re-
quired here are feasible is quite limited. The most promising among these appears to be
the temperature field, which can be measured via the temperature-dependent collisional
de-excitation rate of certain laser dyes (Dahm, Su & Frederiksen 1993). In that case Sc =
7. and thus the range of lengthscales in the velocity field accessible to the measurements
1s over 17 times larger than in Figs. 7 and 8. This would allow spatial measurements
over lengthscales extending from the dissipative range into the inertial range. The
prospects for such measurements is discussed further in Section V. For the moment, we
concentrate on the velocity gradient fields associated with vector velocity field measure-
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ments of the type in Figs. 7 and 8.

B. Velocity gradien: rensor fields

Velocity vector field measurements in any given three-dimensional spatial data
volume, formed from parallel planes of the type in Figs. 7 and 8, allow simultaneous dif-
ferentiation of each ot the «, v, and w components in x, y, and z to determine the full
nine-component velocity gradient tensor. Of particular interest for dynamical studies of
the small scales of turbulence are the symmetric and antisymmetric parts of this tensor.
Fig. 9 shows the (symmetric) strain rate tensor field components €;(x;r) in the same plane
for which results were given in Figs. 6-8. Similarly, the vorticity vector field compo-
nents ;(x;¢) in the same plane, formed from the antisymmetric velocity gradient tensor
components, are shown in Fig. 10. From these individual velocity and velocity gradient
component fields, dynamical quantities of interest such as the kinetic energy density field
k(x;t) = 1/, u- u(x;e) in Fig. 10a, the kinetic energy dissipation rate field ®(x;r) = 2v g;;
€;(x;t) in Fig. 100, and the enstrophy field W(x;?) = w;w(x;?) in Fig. 10¢ can be exam-
ined. Moreover, interactions between the symmetric and antisymmetric tensor compo-
nents, such as the enstrophy production rate Q(x;r) = ; €; @{x;¢) and the scalar dissipa-
tion production rate Z(x;t) = V;&; V{;(x;r), are of particular dynamical interest and can
be examined with very high resolution from measurements such as those in Figs. 6-9.

Studies of all these fields require knowledge of the full nine-component velocity
gradient tensor field. as in Figs. 9 and 10. Such laboratory measurements of the velocity
gradient field on the small scales of a turbulent flow have not previously been possible.
There are four key aspects of the present measurements that collectively make them
unique. Firstly, the scalar imaging velocimetry measurements demonstrated here, giving
the velocity gradient tensor at the small scales of turbulent flows, are fully-resolved.
Previous measurements with similar aims10-20 have been limited to significantly coarser
resolution levels, which thereby at least partially corrupt the gradient tensor components,
since these are highly sensitive to resolution. (It should be noted that the experimentally
measured velocity gradient fields in Figs. 7 and 8 are rather highly resolved even in com-
parison with those typically obtained from direct numerical simulation (DNS) studies of
the small scales of wrbulence. In general, resolution limitations in such simulations, cou-
pled with the need to supply initial conditions with a sufficient number of excited modes,
allows only comparatively few grid points or spectral modes across the smallest velocity
gradient lengthscale. By comparison, in these laboratory measurements the interactions
between gradient lengthscales accessible to the measurement and all larger scales occur
naturally, allowing a much larger number of points across the finest gradient lengthscale.
This is evident by comparing the fields in Figs. 6-10 with typical DNS fields.) Secondly,
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the present measurements are entirely noninvasive, in contrast to earlier measurements
based on multiple hot wire probes. As a consequence, the measurements themselves do
not alter the quantities being measured. Thirdly, unlike most previous measurements of
the gradient tensor components, the present scalar imaging velocimetry technique inher-
ently produces all nine components of this tensor. Most previous probe-based measure-
ments as well as optically-based techniques have been limited to some subset of these.
Finally, in contrast to probe-based methods, which are inherently single-point techniques
producing nme-senes data tor the gradient components at a single point, the present mea-
surements produce these at a very large number of points sufficiently closely spaced in
both space and time to define the continuum fields. These are thus field measurements,
as opposed to point measurements, and they thereby allow experimental examination not
only of statistics of the velocity gradient components, but of the underlying spatiotempo-
ral structure and dynamics in these dynamical fields at the small scales of turbulence.

C. Temporal evolution of the velocity gradient field

Results presented in the previous sections have been for the spatial structure of
the velocity gradient tensor field at a fixed instant in time. However, the four-dimension-
al nature of the scalar field data on which these velocity field measurements are based al-
lows the inversion in (12) to be performed at each time step Az. Accordingly, the time
evolution of any of the fields in the previous section can be examined by repeating the in-
version at the requisite times and assembling the fields of interest in time as shown, for
instance, in Fig. 11. This figure presents the time-varying kinetic energy density field
k(x,r) and the corresponding kinetic energy dissipation rate field ®(x,¢) in the same spa-
tial plane for which results were shown in Figs. 6-10, at 10 sequential instants in time.
The time axis is measured in the inner variable (¢ v/kvz), where ¢ = 0 corresponds to the
instant tor which the results were shown in Figs. 6-10.

Note that, just as the fully-resolved Sc » 1 scalar field data oversamples the veloc-
ity field in space, the requisite time resolution demanded of the scalar field measurements
leads to a At between successive three-dimensional spatial data volumes that is smaller
than needed to fully resolve the time evolution of u(x,f). The results in Fig. 11 are thus
shown at time intervals spaced 3 At apart. Clearly the structure in these planes is well
correlated from one time step to the next, and further, the planes describe a clear temporal
evolution of the flow. This is significant because, for this spacing in time, there is no
common scalar field data involved in any of these time steps. No two planes share scalar
field information in the scalar imaging velocimerry implementation in (3)-(12). Thus
noise in the scalar field data is uncorrelated from one time step to the next. As a conse-
quence. if the formulation implemented here to find the velocity field were sensitive to
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noise, there would be no g priori reason why the same field at two successive times in
Fig. 1 should demonstrate a strong correlation or a clear evolution. The strong correla-
tion of the results therefore must be ascribed to the fundamental well-posedness of the
variational formulation. Moreover, while the results shown are spaced 3 At apart, the
availability of the velocity gradient field components at all intermediate times permits ac-
curate differendaton of the results to yield the detailed time evolution of the fine scales of
turbulent flows.

D. Concluding remarks

The experimental access to the spaual structure and time evolution of the full nine-
component velocity gradient tensor which this scalar imaging velocimetry technique of -
fers allows a level of detailed investigation of the dynamics of the small scales of turbu-
lent flows that has previously been conceivable only through DNS studies. These experi-
mental results actually provide higher resolution of the fine scales than is currently possi-
ble by such direct numerical simulations. Moreover, as demonstrated here, the availabili-
ty of practical experimental techniques for measuring the requisite scalar field information
The velocity fields which result from application of the scalar imaging velocimetry tech-
nique to this scalar field measurement technique are thus currently well suited to investi-
gations of the fine structure and dynamics of the inner scales of turbulent flows.

Comparisons of the DNS and experimental scalar fields (Figs. 1 and 7, respectively)
and the corresponding velocity fields (Figs. 4, 9) demonstrate clearly the differing charac-
ter of the low and high Schmidt number limits. While the experimental scalar field ap-
pears to have finer characteristic length scales than the DNS scalar field, the DNS velocity
field clearly has much finer length scales than does the experimental field. In particular,
comparison of the fields emphasizes the variance in characteristic velocity and scalar
lengthscales, which goes as Sc/2, and also shows the degree to which the Sc = 1 limit is
a demanding one for the SIV technique.

At present, scalar field data which is sufficiently resolved to permit application of the
scalar imaging velocimetry technique is only available for flows with Sc » 1. Thus the
realm of Sc = | flows, e.g. the gas phase flows of particular interest in combustion appli-
cations, remains inaccessible by the fully resolved scalar field measurements necessary
for this velocimetry method. However, the lack of suitable scalar field diagnostics is the
only limitation; as shown in §4, fully resolved Sc = 1 scalar field information is fully
amenable to the scalar imaging velocimetry technique.

Mention possibility of using T-field imaging (refer to Dahm, Su & Frederiksen 1993

Lisbon submitted) for Sc = 7, giving 17 x larger view of flow field SQRT(2075/7) =
17.2. Preliminary results suggest that this is feasible using the same approach used here
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to obtain measurements of the dissipative scales of mtion in turbulent flows. That would
permit experimental measurements of the full velocity gradient tensor over lengthscales
extending from the dissipative scales into the inertial range, thereby allowing laboratory
studies of subgnd scale dynamics.
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Schematic of the data acquisition process, showing the progression
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volumes, resulting in the full four-dimensional data set. The full

?-ata space contains over 3 billion point measurements of the scalar
ield.




Figure 2. A three-dimensional data volume of the type described in Refs.
35,36. The ou.:r scale Reynolds number is Re§ = 3700. Red
represents the highest scalar concentration value in the volume,
while blue denotes pure ambient fluid.




Figure 3. Scalar field information from a direct numerical simulation of
turbulent mixing at Sc =1. (a) A sample data plane.
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Fig. 3b. The time derivative d{/or for the plane in (a).




Fig. 3¢. The scalar energy dissipation V{-V{.
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Fig. 3d. The scalar field diffusion term (1/ReSc)V2{.
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Figure 4. Comparisons of SIV velocity results with known DNS fields, for
the scalar field information in Fig. 3. (a) The u-component of the
velocity, from SIV.
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Fig. 4b. v-component, SIV.
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Fig. 4c. w-component, SIV.




Fig. 4d. The actual DNS u-component field.
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Fig. 4e. v-component, DNS.
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Fig. 4f. w-component, DNS.
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Figure 5. Comparisons of the pdf’s of velocity component values w/u; rms
for the SIV results and the DNS fields of Fig. 4. (a) u-component.
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Fig. 5b. v-component.
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Fig. S5¢c. w-component.
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Figure 6. Velocity gradient component fields, for both the SIV results and
the DNS fields of Fig. 4. (a) The du/dy field from SIV.
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Fig. 6b. ov/oz, SIV.
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Fig. 6¢. ow/ox, SIV.
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Fig. 6d. The actual DNS du/dy field.
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Fig. 6e. dv/dz, DNS.
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Fig. 6f. dw/ox, DNS.
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Figure 7. Scalar field information from an experimental turbulent flow at
Sc = 2075. The acquisition scheme is described in Refs. 34-37.
(a) A sample data plane.




Fig. 7b. The time derivative 9{/dt for the plane in ().
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Fig. 7c. The scalar energy dissipation \Z8%4




Fig. 7d. The scalar field diffusion term (1/ReSc)VZL,




Figure 8. SIV results for the velocity field in a turbulent flow at Sc = 2075,
from the scalar field information in Fig. 7. (a) u-component.
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Fig. 8b. The v-component, with the mean streamwise component having
been subtracted out.
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Figure 9. Projections of the SIV results of Fig. 8 onto two-dimensional
planes. (a) The u- and v- components.
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Fig. 9b. The u- and w- components.
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Figure 10. Components of the velocity gradient tensor, from the SIV results
of Fig. 8. (a) The g, field.




22, 9

Fig 10b. €.




221, 9
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Figure 11. Components of the vorticity vector @, from the SIV results of
Fig. 8. (a) o,.
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Figure 12. Dynamical quantities from the SIV results of Fig. 8, and the
velocity gradients of Fig. 10. (a) The kinetic energy field k(x.r).




Fig. 12b. The kinetic energy dissipation rate field &(x.?).
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Fig. 12c. The vorticity magnitude lok(x,?).
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Figure 13. Examples of time evolution information available from SIV studies. (a) Evolution
of the kinetic energy field k(x.7).
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Fig. 13b. Evolution of the kinetic energy dissipation rate field ®(x.?).
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